Plasminogen activators promote excitotoxicity-induced retinal damage.

نویسندگان

  • Raghuveer S Mali
  • Mei Cheng
  • Shravan K Chintala
چکیده

Increased levels of extracellular l-glutamate have been suggested to play a role in retinal damage in a number of blinding diseases such as glaucoma and diabetic retinopathy. Although glutamate can cause retinal damage in part by hyperstimulating its receptors ("excitotoxicity"), the downstream events that lead to retinal damage are poorly understood. In this study, we injected kainic acid (KA), a glutamate receptor agonist that specifically hyperstimulates non-NMDA-type receptors, into the vitreous humor of CD-1 mice and have investigated the role of plasminogen activators (PAs) [tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA)] in excitotoxicity-induced retinal damage. Injection of KA into the vitreous humor led to an up-regulation in tPA and an induction in uPA activity in the retina and this was associated with activation of zymogen plasminogen to active plasmin. Immunocytochemical analysis indicated that retinal ganglion cells (RGCs), constitutively express tPA and release it into the extracellular space upon KA injection. Immunocytochemical analysis also indicated an increase in uPA in the nerve fiber layer after KA injection that was absent in the control retinas. These events were associated with apoptotic death of cells initially in the ganglion cell layer and subsequently in the inner and outer nuclear layer, associated with loss of RGCs and amacrine cells. These phenomena were inhibited when recombinant plasminogen activator inhibitor (rPAI-1) or tPA-STOP were injected into the vitreous humor with KA, whereas a plasmin inhibitor, alpha-2-antiplasmin, failed to attenuate KA-induced retinal damage. Taken together, these results suggest that inhibition of plasminogen activators might attenuate retinal damage in blinding retinal diseases in which hyperstimulation of glutamate receptors is implicated as a causative factor to retinal damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of plasminogen activation protects against ganglion cell loss in a mouse model of retinal damage.

PURPOSE The mechanisms that trigger ganglion cell death in ischemic retinal diseases are not clearly understood. Using a mouse optic nerve ligation model, the objective of this study was to test the hypothesis that extracellular matrix (ECM) modulating plasminogen activators (PAs) potentiate ganglion cell loss. METHODS Optic nerve ligation was performed to initiate ganglion cell loss in the r...

متن کامل

Endogenous tissue type plasminogen activator facilitates NMDA-induced retinal damage.

To investigate the role of tissue plasminogen activator (tPA) in retinal damage, tPA-deficient and wild-type mice were employed. Two different retinal neuron insult models were used in the present study. One is an excitotoxin-treated retinal model, created by direct intravitreal injection of glutamate analogs, NMDA or kainic acid (KA), and the other is an ischemia-reperfusion model induced by t...

متن کامل

α-Melanocyte-stimulating hormone prevents glutamate excitotoxicity in developing chicken retina via MC4R-mediated down-regulation of microRNA-194

Glutamate excitotoxicity is a common pathology to blinding ischemic retinopathies, such as diabetic retinopathy, glaucoma, and central retinal vein or artery occlusion. The development of an effective interventional modality to glutamate excitotoxicity is hence important to preventing blindness. Herein we showed that α-melanocyte-stimulating hormone (α-MSH) time-dependently protected against gl...

متن کامل

پتانسیل آنتی‌پلاسمینوژن منوکلونال آنتی‌بادی در دستکاری دو سیستم فیبرینولیز و آنژیوژنز

Background: Plasminogen has a central role in fibrinolyrtic system can activate through various activators (PAs) to its active form plasmin and perfoem its vital function that is fibrin clot lysis. Furthermore the fibrinolyrtic system plays a major role in angiogenesis. The fibrinolyrtic system activation control cell migration and invasion. In addition to this, plasmin regulates tumor growth. ...

متن کامل

Inhibition of Reactive Gliosis Attenuates Excitotoxicity-Mediated Death of Retinal Ganglion Cells

Reactive gliosis is a hallmark of many retinal neurodegenerative conditions, including glaucoma. Although a majority of studies to date have concentrated on reactive gliosis in the optic nerve head, very few studies have been initiated to investigate the role of reactive gliosis in the retina. We have previously shown that reactive glial cells synthesize elevated levels of proteases, and these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 19 10  شماره 

صفحات  -

تاریخ انتشار 2005